Input-Sensitive Fuzzy Cognitive Maps
نویسندگان
چکیده
Complex systems with nonlinearities and surrounding uncertainty are usually modeled sufficiently by Fuzzy Cognitive Maps (FCMs). FCMs work efficiently even with missing data. Experts, for each case study, support with their knowledge the developed FCMs. Nevertheless, the main drawback of FCMs is their convergence to the same equilibrium point regardless of the initial conditions. In this paper a different approach for modeling FCMs is proposed, where the inputs gain back their lost importance. Thus, Input-Sensitive Fuzzy Cognitive Maps (IS-FCMs), supported both by experts and by the appropriate Rule-Base, manage to converge to desired operating points. The Nonlinear Hebbian Learning algorithm (NHL) is used in order to optimize the values of the weights. A PV-System application is presented. The simulation results support the hypothesis of the proposed new IS-FCM model.
منابع مشابه
Fuzzy Cognitive Maps Based Cricket Player Performance Evaluator
Sports persons’ performance evaluation is a critical issue. The parameters used for this purpose are vague and imprecise. We propose a fuzzy cognitive map based cricket player performance evaluator tool that uses fuzzy logic to perform computation keeping in view the relations among various input parameters. A very simple and effective graphical user interface is build to use the proposed model...
متن کاملZ-Cognitive Map: An Integrated Cognitive Maps and Z-Numbers Approach under Cognitive Information
Usually, in real-world engineering problems, there are different types of uncertainties about the studied variables, which can be due to the specific variables under investigation or interaction between them. Fuzzy cognitive maps, which addresses the cause-effect relation between variables, is one of the most common models for better understanding of the problems, especially when the quantitati...
متن کاملGenetic learning of fuzzy cognitive maps
Fuzzy cognitive maps (FCMs) are a very convenient, simple, and powerful tool for simulation and analysis of dynamic systems. They were originally developed in 1980 by Kosko, and since then successfully applied to numerous domains, such as engineering, medicine, control, and political affairs. Their popularity stems from simplicity and transparency of the underlying model.At the same time FCMs a...
متن کاملBanerjee: Adaptive Fuzzy Cognitive Maps Vs Neutrosophic Cognitive Maps
Introduction Knowledge management (KM) and artificial intelligence (AI) are interconnected disciplines to discern information for information management systems. Researchers have raised issues of knowledge that are living and active. Decisions based on real life knowledge bases are subjective judgments in nature. AI has well-developed cognitive tools that can process qualitative information of ...
متن کاملRule Based Fuzzy Cognitive Maps and Fuzzy Cognitive Maps – A Comparative Study
This paper focus on the comparison between Rule Based Fuzzy Cognitive Maps and Fuzzy Cognitive Maps. The paper shows FCM limitations to represent nonmonotonic non-symmetric causal relations, presents results that exhibit the stability of RBFCM in systems where FCM is not stable due to its non-fuzzy inherent nature and presents RBFCM potential to model qualitative real-world dynamic systems.
متن کامل